Режим mimo что. Технология передачи данных MIMO в беспроводных сетях WIFI

MIMO (Multiple Input Multiple Output – множественный вход множественный выход) – это технология, используемая в беспроводных системах связи (WIFI, сотовые сети связи), позволяющая значительно улучшить спектральную эффективность системы, максимальную скорость передачи данных и емкость сети. Главным способом достижения указанных выше преимуществ является передача данных от источника к получателю через несколько радио соединений, откуда данная технология и получила свое название. Рассмотрим предысторию данного вопроса, и определим основные причины, послужившие широкому распространению технологии MIMO.

Необходимость в высокоскоростных соединениях, предоставляющих высокие показатели качества обслуживания (QoS) с высокой отказоустойчивостью растет от года в год. Этому в значительной мере способствует появление таких сервисов как VoIP (), VoD () и др. Однако большинство беспроводных технологий не позволяют предоставить абонентам высокое качество обслуживания на краю зоны покрытия. В сотовых и других беспроводных системах связи качество соединения, также как и доступная скорость передачи данных стремительно падает с удалением от (BTS). Вместе с этим падает и качество услуг, что в итоге приводит к невозможности предоставления услуг реального времени с высоким качеством на всей территории радио покрытия сети. Для решения данной проблемы можно попробовать максимально плотно установить базовые станции и организовать внутреннее покрытие во всех местах с низким уровнем сигнала. Однако это потребует значительных финансовых затрат что в конечном счете приведет к росту стоимости услуги и снижению конкурентоспособности. Таким образом, для решения данной проблемы требуется оригинальное нововведение, использующее, по возможности, текущий частотный диапазон и не требующее строительства новых объектов сети.

Особенности распространения радиоволн

Для того чтобы понять принципы действия технологии MIMO необходимо рассмотреть общие в пространстве. Волны, излучаемые различными системами беспроводной радиосвязи в диапазоне свыше 100 МГц, во многом ведут себя как световые лучи. Когда радиоволны при распространении встречают какую-либо поверхность, то в зависимости от материала и размера препятствия часть энергии поглощается, часть проходит насквозь, а оставшаяся – отражается. На соотношение долей поглощенной, отраженной и прошедшей насквозь частей энергий влияет множество внешних факторов, в том числе и частота сигнала. Причем отраженная и прошедшая насквозь энергии сигнала могут изменить направление своего дальнейшего распространения, а сам сигнал разбивается на несколько волн.

Распространяющийся по вышеуказанным законам сигнал от источника к получателю после встречи с многочисленным препятствиями разбивается на множество волн, лишь часть из которых достигнет приемник. Каждая из дошедших до приемника волн образует так называемый путь распространения сигнала. Причем из-за того, что разные волны отражаются от разного числа препятствий и проходят разное расстояние, различные пути имеют разные .

В условиях плотной городской постройки, из-за большого числа препятствий, таких как здания, деревья, автомобили и др., очень часто возникает ситуация когда между (MS) и антеннами базовой станции (BTS) отсутствует прямая видимость. В этом случае, единственным вариантом достижения сигнала приемника являются отраженные волны. Однако, как отмечалось выше, многократно отраженный сигнал уже не обладает исходной энергией и может прийти с запозданием. Особую сложность также создает тот факт, что объекты не всегда остаются неподвижными и обстановка может значительно измениться с течением времени. В связи с этим возникает проблема – одна из наиболее существенных проблем в беспроводных системах связи.

Многолучевое распространение – проблема или преимущество?

Для борьбы с многолучевым распространением сигналов применяется несколько различных решений. Одной из наиболее распространенных технологий является Receive Diversity – . Суть его заключается в том, что для приема сигнала используется не одна, а сразу несколько антенн (обычно две, реже четыре), расположенные на расстоянии друг от друга. Таким образом, получатель имеет не одну, а сразу две копии переданного сигнала, пришедшего различными путями. Это дает возможность собрать больше энергии исходного сигнала, т.к. волны, принятые одной антенной, могут не быть принятыми другой и наоборот. Также сигналы, приходящие в противофазе к одной антенне, могут приходить к другой синфазно. Эту схему организации радио интерфейса можно назвать Single Input Multiple Output (SIMO), в противовес стандартной схеме Single Input Single Output (SISO). Также может быть применен обратный подход: когда используется несколько антенн на передачу и одна на прием. Благодаря этому также увеличивается общая энергия исходного сигнала, полученная приемником. Эта схема называется Multiple Input Single Output (MISO). В обеих схемах (SIMO и MISO) несколько антенн устанавливаются на стороне базовой станции, т.к. реализовать разнесение антенн в мобильном устройстве на достаточно большое расстояние сложно без увеличения габаритов самого оконечного оборудования.

В результате дальнейших рассуждений мы приходим к схеме Multiple Input Multiple Output (MIMO). В этом случае устанавливаются несколько антенн на передачу и прием. Однако в отличие от указанных выше схем эта схема разнесения позволяет не только бороться с многолучевым распространением сигнала, но и получить некоторые дополнительные преимущества. За счет использования нескольких антенн на передаче и приеме каждой паре передающей/приемной антенне можно сопоставить отдельный тракт для передачи информации. При этом разнесенный прием будет выполняться оставшимися антеннами, а данная антенна также будет выполнять функции дополнительной антенны для других трактов передачи. В результате, теоретически, можно увеличить скорость передачи данных во столько раз, сколько дополнительных антенн будет использоваться. Однако существенное ограничение накладывается качеством каждого радио тракта.

Принцип работы MIMO

Как уже отмечалось выше, для организации технологии MIMO необходима установка нескольких антенн на передающей и на приемной стороне. Обычно устанавливается равное число антенн на входе и выходе системы, т.к. в этом случае достигается максимальная скорость передачи данных. Чтобы показать число антенн на приеме и передаче вместе с названием технологии «MIMO» обычно упоминается обозначение «AxB», где A – число антенн на входе системы, а B – на выходе. Под системой в данном случае понимается радио соединение.

Для работы технологии MIMO необходимы некоторые изменения в структуре передатчика по сравнению с обычными системами. Рассмотрим лишь один из возможных, наиболее простых, способов организации технологии MIMO. В первую очередь, на передающей стороне необходим делитель потоков, который будет разделять данные, предназначенные для передачи на несколько низкоскоростных подпотоков, число которых зависит от числа антенн. Например, для MIMO 4х4 и скорости поступления входных данных 200 Мбит/сек делитель будет создавать 4 потока по 50 Мбит/сек каждый. Далее каждый их данных потоков должен быть передан через свою антенну. Обычно, антенны на передаче устанавливаются с некоторым пространственным разнесением, чтобы обеспечить как можно большее число побочных сигналов, которые возникают в результате переотражений. В одном из возможных способов организации технологии MIMO сигнал передается от каждой антенны с различной поляризацией, что позволяет идентифицировать его при приеме. Однако в простейшем случае каждый из передаваемых сигналов оказывается промаркированным самой средой передачи (задержкой во времени, и другими искажениями).

На приемной стороне несколько антенн принимают сигнал из радиоэфира. Причем антенны на приемной стороне также устанавливаются с некоторым пространственным разнесением, за счет чего обеспечивается разнесенный прием, обсуждавшийся ранее. Принятые сигналы поступают на приемники, число которых соответствует числу антенн и трактов передачи. Причем на каждый из приемников поступают сигналы от всех антенн системы. Каждый из таких сумматоров выделяет из общего потока энергию сигнала только того тракта, за который он отвечает. Делает он это либо по какому-либо заранее предусмотренному признаку, которым был снабжен каждый из сигналов, либо благодаря анализу задержки, затухания, сдвига фазы, т.е. набору искажений или «отпечатку» среды распространения. В зависимости от принципа работы системы (Bell Laboratories Layered Space-Time - BLAST, Selective Per Antenna Rate Control (SPARC) и т.д.), передаваемый сигнал может повторяться через определенное время, либо передаваться с небольшой задержкой через другие антенны.

В системе с технологией MIMO может возникнуть необычное явление, которое заключается в том, что скорость передачи данных в системе MIMO может снизиться в случае появления прямой видимости между источником и приемником сигнала. Это обусловлено в первую очередь уменьшением выраженности искажений окружающего пространства, который маркирует каждый из сигналов. В результате на приемной стороне становится проблематичным разделить сигналы, и они начинают оказывать влияние друг на друга. Таким образом, чем выше качество радио соединения, тем меньше преимуществ можно получить от MIMO.

Multi-user MIMO (MU-MIMO)

Рассмотренный выше принцип организации радиосвязи относится к так называемой Single user MIMO (SU-MIMO), где существует лишь один передатчик и приемник информации. В этом случае и передатчик и приемник могут четко согласовать свои действия, и в то же время нет фактора неожиданности, когда в эфире могут появиться новые пользователи. Такая схема вполне подходит для небольших систем, например для организации связи в доме офисе между двумя устройствами. В свою очередь большинство систем, такие как WI-FI, WIMAX, сотовые системы связи являются многопользовательскими, т.е. в них существует единый центр и несколько удаленных объектов, с каждым из которых необходимо организовать радиосоединение. Таким образом, возникают две проблемы: с одной стороны базовая станция должна передать сигнал ко многим абонентам через одну и ту же антенную система (MIMO broadcast), и в то же время принять сигнал через те же антенны от нескольких абонентов (MIMO MAC – Multiple Access Channels).

В направлении uplink – от MS к BTS, пользователи передает свою информацию одновременно на одной и той же частоте. В данном случае для базовой станции возникает сложность: необходимо разделить сигналы от различных абонентов. Одним из возможных способов борьбы с этой проблемой также является способ линейной обработки (linear processing), который предусматривает предварительную передаваемого сигнала. Исходный сигнал, согласно этому способу, перемножается с матрицей, которая составляется из коэффициентов отражающих интерференционное воздействие от других абонентов. Матрица составляется исходя из текущей обстановки в радиоэфире: числа абонентов, скоростей передачи и т.п. Таким образом, перед передачей сигнал подвергается искажению обратному с тем, которое он встретит во время передачи в радиоэфире.

В downlink – направление от BTS к MS, базовая станция передает сигналы одновременно на одном и том же канале сразу к нескольким абонентам. Это приводит к тому, что сигнал, передаваемый для одного абонента, оказывает влияние на прием всех других сигналов, т.е. возникает интерференция. Возможными вариантами борьбы с этой проблемой является использование , либо применение технологии кодирования dirty paper («грязная бумага»). Рассмотрим технологию dirty paper подробнее. Принцип ее действия основан на анализе текущего состояния радиоэфира и числа активных абонентов. Единственный (первый) абонент передает свои данные к базовой станции без кодирования, изменения своих данных, т.к. интерференции от других абонентов нет. Второй абонент будет кодировать, т.е. изменять энергию своего сигнала так чтобы не помешать первому и не подвергнуть свой сигнал влиянию от первого. Последующие абоненты, добавляемые в систему, также будут следовать этому принципу, и опираться на число активных абонентов и эффект, оказываемый передаваемыми ими сигналами.

Применение MIMO

Технология MIMO в последнее десятилетие является одним из самых актуальных способов увеличения пропускной способности и емкости беспроводных систем связи. Рассмотрим некоторые примеры использования MIMO в различных системах связи.

Стандарт WiFi 802.11n – один из наиболее ярких примеров использования технологии MIMO. Согласно ему он позволяет поддерживать скорость до 300 Мбит/сек. Причем предыдущий стандарт 802.11g позволял предоставлять лишь 50 Мбит/сек. Кроме увеличения скорости передачи данных, новый стандарт благодаря MIMO также позволяет обеспечить лучшие характеристики качества обслуживания в местах с низким уровнем сигнала. 802.11n используется не только в системах точка/многоточка (Point/Multipoint) – наиболее привычной нише использования технологии WiFi для организации LAN (Local Area Network), но и для организации соединений типа точка/точка которые используются для организации магистральных каналов связи со скоростью несколько сотен Мбит/сек и позволяющих передавать данные на десятки километров (до 50 км).

Стандарт WiMAX также имеет два релиза, которые раскрывают новые возможности перед пользователями с помощью технологии MIMO. Первый – 802.16e – предоставляет услуги мобильного широкополосного доступа. Он позволяет передавать информацию со скоростью до 40 Мбит/сек в направлении от базовой станции к абонентскому оборудованию. Однако MIMO в 802.16e рассматривается как опция и используется в простейшей конфигурации – 2х2. В следующем релизе 802.16m MIMO рассматривается как обязательная технология, с возможной конфигурацией 4х4. В данном случае WiMAX уже можно отнести к сотовым системам связи, а именно четвертому их поколению (за счет высокой скорости передачи данных), т.к. обладает рядом присущих сотовым сетям признаков: , голосовые соединения. В случае мобильного использования, теоретически, может быть достигнута скорость 100 Мбит/сек. В фиксированном исполнении скорость может достигать 1 Гбит/сек.

Наибольший интерес представляет использование технологии MIMO в системах сотовой связи. Данная технология находит свое применение, начиная с третьего поколения систем сотовой связи. Например, в стандарте , в Rel. 6 она используется совместно с технологией HSPA с поддержкой скоростей до 20 Мбит/сек, а в Rel. 7 – с HSPA+, где скорости передачи данных достигают 40 Мбит/сек. Однако в системах 3G MIMO так и не нашла широкого применения.

Системы , а именно LTE, также предусматривают использование MIMO в конфигурации до 8х8. Это в теории может дать возможность передавать данные от базовой станции к абоненту свыше 300 Мбит/сек. Также важным положительным моментом является устойчивое качество соединения даже на краю . При этом даже на значительном удалении от базовой станции, или при нахождении в глухом помещении будет наблюдаться лишь незначительное снижение скорости передачи данных.

Таким образом, технология MIMO находит применение практически во всех системах беспроводной передачи данных. Причем потенциал ее не исчерпан. Уже сейчас разрабатываются новые варианты конфигурации антенн, вплоть до 64х64 MIMO. Это в будущем позволит добиться еще больших скоростей передачи данных, емкости сети и спектральной эффективности.

Одно из самых существенных и важных нововведений Wi-Fi за прошедшие 20 лет - технология Multi User - Multiple Input Multiple Output (MU-MIMO). MU-MIMO расширяет функциональность появившегося недавно обновления беспроводного стандарта 802.11ac «Wave 2». Безусловно, это огромный прорыв для беспроводной связи. Данная технология помогает увеличить максимальную теоретическую скорость беспроводного соединения от 3,47 Гбит/с в оригинальной спецификации стандарта 802.11ac до 6,93 Гбит/с в обновлении стандарта 802.11ac Wave 2. Это одна из самых сложных функциональностей Wi-Fi на сегодняшний день.

Давайте разберемся как это работает!

Технология MU-MIMO повышает планку за счет разрешения нескольким устройствам принимать несколько потоков данных. Она базируется на однопользовательской технологии MIMO (SU-MIMO), которая была представлена почти 10 лет назад со стандартом 802.11n.

SU-MIMO увеличивает скорость Wi-Fi-соединения, позволяя паре беспроводных устройств одновременно принимать или отправлять несколько потоков данных.

Рисунок 1. Технология SU-MIMO предоставляет многоканальные входные и выходные потоки одному устройству в одно и то же время. Технология MU-MIMO обеспечивает одновременную связь с несколькими устройствами.

По сути, революционные изменения для Wi-Fi обеспечивают две технологии. Первая из этих технологий, называемая beamforming, позволяет Wi-Fi-маршрутизаторам и точкам доступа более эффективно использовать радиоканалы. До появления этой технологии Wi-Fi-маршрутизаторы и точки доступа работали как электрические лампочки, посылая сигнал во всех направлениях. Проблема заключалась в том, что несфокусированному сигналу ограниченной мощности трудно добраться до клиентских Wi-Fi-устройств.

С помощью технологии beamforming Wi-Fi-маршрутизатор или точка доступа обменивается с клиентским устройством информацией о своем местоположении. Затем маршрутизатор изменяет свою фазу и мощность для формирования лучшего сигнала. Как результат: более эффективно используются радиосигналы, ускоряется передача данных и, возможно, увеличивается максимальная дистанция соединения.

Возможности beamforming расширяются. До сих пор Wi-Fi-маршрутизаторы или точки доступа были по своей сути однозадачными, посылая или принимая данные только от одного клиентского устройства одновременно. В более ранних версиях семейства стандартов беспроводной передачи данных 802.11, включая стандарт 802.11n и первую версию стандарта 802.11ac, существовала возможность одновременного приема или передачи нескольких потоков данных, но до сих пор не существовало метода, позволяющего Wi-Fi-маршрутизатору или точке доступа в одно и то же время «общаться» сразу с несколькими клиентами. Отныне же с помощью MU-MIMO такая возможность появилась.

Это действительно большой прорыв, так как возможность одновременной передачи данных сразу нескольким клиентским устройствам значительно расширяет доступную полосу пропускания для беспроводных клиентов. Технология MU-MIMO продвигает беспроводные сети от старого способа CSMA-SD, когда в одно и то же время обслуживалось только одно устройство, к системе, где сразу несколько устройств могут одновременно «говорить». Для большей наглядности примера, представьте себе переход от однополосной проселочной дороги к широкой автомагистрали

Сегодня беспроводные маршрутизаторы и точки доступа второго поколения стандарта 802.11ac Wave 2 активно завоевывают рынок. Каждый, кто разворачивает Wi-Fi понимать специфику работы технологии MU-MIMO. Предлагаем вашему вниманию 13 фактов, которые ускорит ваше обучение в этом направлении.

1. MU-MIMO использует только «Downstream» поток (от точки доступа к мобильному устройству).

В отличие от SU-MIMO, технология MU-MIMO в настоящее время работает только для п ередачи данных от точки доступа к мобильному устройству. Только беспроводные маршрутизаторы или точки доступа могут одновременно передавать данные нескольким пользователям, будь то один или несколько потоков для каждого из них. Сами же беспроводные устройства (такие, как смартфоны, планшеты или ноутбуки) по-прежнему должны по очереди направлять данные к беспроводному маршрутизатору или точке доступа, хотя при этом при наступлении их очереди они по отдельности могут использовать технологию SU-MIMO для передачи нескольких потоков.

Технология MU-MIMO будет особенно полезной в тех сетях, где пользователи больше скачивают данные, чем загружают.

Возможно, в будущем будет реализована версия технологии Wi-Fi: 802.11ax , где метод MU-MIMO будем применим и для «Upstream» трафика.

2. MU-MIMO работает только в Wi-Fi-диапазоне частот 5 ГГц

Технология SU-MIMO работает как в диапазоне частот 2,4 ГГц, так и 5 ГГц. Беспроводные роутеры и точки доступа второго поколения стандарта 802.11ac Wave 2 могут одновременно обслуживать несколько пользователей только на полосе частот 5 ГГц. С одной стороны, конечно, жаль, что на более узкой и более перегруженной полосе частот 2,4 ГГц мы не сможем использовать новую технологию. Но, с другой стороны, на рынке появляется все больше двухдиапазонных беспроводных устройств, поддерживающих технологию MU-MIMO, которые мы можем использовать для разворачивания производительных корпоративных Wi-Fi-сетей.

3. Технология Beamforming помогает направлять сигналы

В литературе СССР можно встретить понятие Фазированная Антенная Решётка, которая была разработана для военных радаров в конце 80-х. Аналогичная технология была применена в современном Wi-Fi. MU-MIMO использует технологию формирования направленного сигнала (в англоязычной технической литературе известной как «beamforming»). Beamfiorming позволяет направлять сигналы в направлении предполагаемого местоположения беспроводного устройства (или устройств), а не посылать их случайным образом во всех направлениях. Таким образом получается сфокусировать сигнал и существенно увеличить дальность действия и скорость работы Wi-Fi-соединения.

Хотя технология beamforming стала опционально доступна еще со стандартом 802.11n, тем ни менее большинство производителей реализовывали свои проприетарные версии этой технологии. Эти вендоры и сейчас предлагают проприетарные реализации технологии в своих устройствах, но теперь им придется включить хотя бы упрощенную и стандартизированную версию технологии формирования направленного сигнала, если они хотят поддерживать технологию MU-MIMO в своей продуктовой линейке стандарта 802.11ac.

4. MU-MIMO поддерживает ограниченное количество одновременных потоков и устройств

К огромному сожалению, маршрутизаторы или точки доступа с реализованной технологией MU-MIMO не могут одновременно обслуживать неограниченное количество потоков и устройств. Маршрутизатор или точка доступа имеют собственное ограничение на число потоков, которые они обслуживают (зачастую это 2, 3 или 4 потока), и это количество пространственных потоков также ограничивает количество устройств, которые точка доступа может одновременно обслужить. Так, точка доступа с поддержкой четырех потоков может одновременно обслуживать четыре различных устройства, либо, к примеру, один поток направить к одному устройству, а три других потока агрегировать на другое устройство (увеличив скорость от объёединения каналов).​

5. От пользовательских устройств не требуется наличие нескольких антенн

Как и в случае с технологией SU-MIMO, только беспроводные устройства со встроенной поддержкой MU-MIMO могут агрегировать потоки (скорость). Но, в отличие от ситуации с технологией SU-MIMO, беспроводным устройствам не обязательно требуется иметь несколько антенн, чтобы принимать MU-MIMO-потоки от беспроводных маршрутизаторов и точек доступа. Если беспроводное устройство оснащено только одной антенной, оно может принять только один MU-MIMO-поток данных от точки доступа, используя beamforming для улучшения приёма.

Большее количество антенн позволит беспроводному пользовательскому устройству принимать большее количество потоков данных одновременно (обычно из расчета один поток на одну антенну), что, безусловно, положительно скажется на производительности этого устройства. Однако, наличие нескольких антенн у пользовательского устройства негативно сказывается на потребляемой мощности и размере этого изделия, что критично для смартфонов.

Однако технология MU-MIMO предъявляет меньшие аппаратные требования к клиентским устройствам, чем обременительная в техническом плане технология SU-MIMO, то можно с уверенностью предположить, что производители гораздо охотнее станут оснащать свои ноутбуки и планшеты поддержкой технологии MU-MIMO.​

6. Точки доступа выполняют «тяжелую» обработку

Стремясь к упрощению требований к устройствам конечных пользователей, разработчики технологии MU-MIMO постарались переложить на точки доступа большую часть работы по обработке сигнала. Это еще один шаг вперед по сравнению с технологией SU-MIMO, где бремя по обработке сигнала большей частью лежало на пользовательских устройствах. И опять же, это поможет производителям клиентских устройств экономить на мощности, размере и других затратах при производстве своих продуктовых решений с поддержкой MU-MIMO, что должно весьма позитивно сказаться на популяризации данной технологии.

7. Даже бюджетные устройства получают ощутимую выгоду от одновременной передачи через несколько пространственных поток

Подобно агрегации каналов в сети Ethernet (802.3ad и LACP), объединение потоков 802.1ac не увеличивает скорость соединения «точка-точка». Т.е. если вы единственный пользователь и у Вас запущено только одно приложение - вы задействует только 1 пространственный поток.

Однако существует возможность увеличить общую пропускную способность сети за счет предоставления возможности по обслуживанию точкой доступа нескольких пользовательских устройств одновременно.

Но если все используемые в вашей сети пользовательские устройства поддерживают работу только с одним потоком, то MU-MIMO позволит вашей точке доступа обслуживать одновременно до трех устройств, вместо одного за раз, в то время как другим (более продвинутым) пользовательским устройствам придется ожидать своей очереди.




Рисунок 2​.

8. Некоторые пользовательские устройства имеют скрытую поддержку технологии MU-MIMO

Не смотря на то, что в настоящее время все еще не так много маршрутизаторов, точек доступа или мобильных устройств поддерживают MU-MIMO, в компании-производителе Wi-Fi-чипов утверждают, что часть производителей в своем производственном процессе учла аппаратные требования для поддержки новой технологии для некоторых своих устройств для конечных пользователей еще несколько лет назад. Для таких устройств относительно простое обновление программного обеспечения добавит поддержку технологии MU-MIMO, что также должно ускорить популяризацию и распространение технологии, а также стимулировать компании и организации модернизировать свои корпоративные беспроводные сети с помощью оборудования с поддержкой стандарта 802.11ac.

9. Устройства без поддержки MU-MIMO также оказываются в выигрыше

Не смотря на то, что Wi-Fi-устройства обязательно должны иметь поддержку MU-MIMO для того, чтобы использовать эту технологию, даже те клиентские устройства, которые такой поддержкой не имеют, могут получить косвенную выгоду от работы в беспроводной сети, где маршрутизатор или точки доступа поддерживают технологию MU-MIMO. Следует помнить, что скорость передачи данных по сети напрямую зависит от общего времени, в течение которого абонентские устройства подключены к радиоканалу. И если технология MU-MIMO позволит обслуживать часть устройств быстрее, то это означает, что у точек доступа в такой сети останется больше времени на обслуживание других клиентских устройств.

10. MU-MIMO помогает увеличить пропускную способность беспроводной сети

Когда вы увеличиваете скорость Wi-Fi-соединения, вы также увеличиваете пропускную способность беспроводной сети. Так как устройства обслуживаются более быстро, то у сети появляется больше эфирного времени на обслуживание большего количества клиентских устройств. Таким образом, технология MU-MIMO может значительно оптимизировать работу беспроводных сетей с интенсивным трафиком или большим количеством подключенных устройств, таких как общественные Wi-Fi-сети. Это прекрасная новость, так как количество смартфонов и других мобильных устройств с возможностью подключения к Wi-Fi-сети, скорее всего, продолжит увеличиваться.

11. Поддерживается любая ширина канала

Одним из способов расширения пропускной способности Wi-Fi-канала является связывание каналов, когда объединяются два соседних канала в один канал, который в два раза шире, что фактически удваивает скорость Wi-Fi-соединения между устройством и точкой доступа. Стандарт 802.11n предусматривал поддержку каналов шириной до 40 МГц, в оригинальной спецификации стандарта 802.11ac поддерживаемая ширина канала была увеличена до 80 МГц. В обновленном стандарте 802.11ac Wave 2 поддерживаются каналы шириной 160 МГц.



Рисунок 3. На сегодняшний день стандарт 802.11ac поддерживает каналы шириной до 160 МГц в диапазоне частот 5 ГГц

Однако, не следует забывать, что использование в беспроводной сети каналов большей ширины увеличивает вероятность возникновения помех в совмещенных каналах. Поэтому такой подход не всегда будет правильным выбором для разворачивания всех без исключения Wi-Fi-сетей. Тем ни менее, технология MU-MIMO, как мы можем убедиться, может быть использована для каналов любой ширины.

Тем ни менее, даже если ваша беспроводная сеть использует более узкие каналы шириной 20 МГц или 40 МГц, технология MU-MIMO все равно может помочь ей работать быстрее. А вот насколько быстрее, будет зависеть от того, сколько необходимо будет обслуживать клиентских устройств и сколько потоков каждое из этих устройств поддерживает. Таким образом, использование технологии MU-MIMO даже без широких связанных каналов может более чем в два раза увеличить пропускную способность выходного беспроводного соединения для каждого устройства.

12. Обработка сигналов повышает безопасность

Интересным побочным эффектом технологии MU-MIMO является то, что маршрутизатор или точка доступа шифрует данные перед их отправкой через радиоканалы. Достаточно трудно декодировать данные, передаваемые с использованием технологии MU-MIMO, т. к. не ясно какая часть кода в каком пространственном потоке находится. Хотя впоследствии могут быть разработаны специальные инструменты, позволяющие другим устройствам перехватывать передаваемый трафик, на сегодняшний день технология MU-MIMO эффективно маскирует данные от расположенных вблизи устройств прослушивания. Таким образом, новая технология помогает повысить Wi-Fi-безопасность, что особенно актуально для открытых беспроводных сетей, таких как общественные Wi-Fi-сети, а также точек доступа, работающих в персональном режиме или использующих упрощенный режим аутентификации пользователей (Pre-Shared Key, PSK) на базе технологий защиты Wi-Fi-сети WPA или WPA2.

13. MU-MIMO лучше всего подходит для неподвижных Wi-Fi-устройств

Также существует одно предостережение о технологии MU-MIMO: она не очень хорошо работает с быстродвижущимися устройствами, так как процесс формирования направленного сигнала по технологии beamforming становится более сложным и менее эффективным. Поэтому MU-MIMO не сможет обеспечить вам заметную пользу для устройств, часто использующих роуминг в вашей корпоративной сети. Однако, следует понимать, что эти «проблемные» устройства никак не должны повлиять ни на MU-MIMO-передачу данных другим клиентским устройствам, которые менее подвижны, ни на их производительность.

Подписка на новости

Существующие сети мобильной связи используются не только для осуществления звонков и передачи сообщений. Благодаря цифровому методу передачи, с помощью существующих сетей возможна также передача данных. Данные технологии, в зависимости от уровня развития, обозначаются 3G и 4G. Технологию 4G поддерживает стандарт LTE. Скорость передачи данных зависит от некоторых особенностей сети (определяется оператором), достигая теоретически до 2 Мб/с для сети 3G и до 1 Гб/с для сети 4G. Все указанные технологии работают эффективнее при наличии сильного и стабильного сигнала. Для этих целей большинство модемов предусматривает подключение внешних антенн.

Панельная антенна

В продаже можно встретить различные варианты антенн для улучшения качества приема. Большой популярностью пользуется панельная антенна 3G. Коэффициент усиления подобной антенны составляет около 12 дБ в диапазоне частот 1900-2200 МГц. Подобный тип устройств способен также улучшить качество сигнала 2G – GPRS и EDGE.

Как и подавляющее большинство других пассивных устройств, она имеет одностороннюю направленность, что вместе с увеличением принимаемого сигнала позволяет снизить уровень помех с боковых направлений и сзади. Таким образом, даже в условиях неустойчивого приема можно поднять уровень сигнала до приемлемых значений, тем самым увеличивая скорость приема и передачи информации.

Применение панельных антенн для работы в сетях 4G

Поскольку рабочий диапазон сетей 4G практически совпадает с диапазоном предыдущего поколения, то не возникает никаких сложностей в использовании данных антенн в сетях 3G 4G LTE. Для любой из технологий применение антенн позволяет более приблизить скорости передачи данных к максимальным значениям.

Еще более увеличить скорости приема и передачи данных позволила новая технология, использующая раздельные приемники и передатчики в одной полосе частот. Конструкция существующего 4G модема предусматривает использование технологии MIMO.

Несомненное достоинство панельных антенн – их невысокая стоимость и исключительная надежность. В конструкции практически нет ничего, что может поломаться даже при падении с большой высоты. Единственное слабое место – высокочастотный кабель, который может переломиться в месте ввода в корпус. Для того чтобы продлить срок службы устройства, кабель должен быть надежно закреплен.

Технология MIMO

Для увеличения пропускной способности канала связи между приемником и передатчиком данных разработан метод обработки сигнала, когда прием и передача ведутся на различные антенны.

Обратите внимание! Применяя антенны LTE MIMO, можно увеличить пропускную способность на 20-30% относительно работы с простой антенной.

Основной принцип заключен в устранении взаимосвязи между антеннами.

Электромагнитные волны могут иметь различное направление относительно плоскости земли. Это носит название поляризации. В основном используется вертикально и горизонтально поляризованные антенны. Для исключения взаимного влияния между собой антенны отличаются друг от друга поляризацией на угол 90 гр. Чтобы влияние земной поверхности было одинаково для обеих антенн, плоскости поляризации каждой смещают на 45 гр. относительно земли. Таким образом, если одна из антенн имеет угол поляризации 45 гр., то другая, соответственно, 45 гр. Относительно друг друга смещение составляет необходимые 90 гр.

На рисунке наглядно видно, как развернуты антенны относительно друг друга и относительно земли.

Важно! Поляризация антенн должна быть такой же, как и на базовой станции.

Если для технологий 4G LTE поддержка MIMO по умолчанию имеется на базовой станции, то для 3G в связи с большим количеством устройств без MIMO, операторы не спешат внедрять новые технологии. Дело в том, что в сети MIMO 3G устройства будут работать гораздо медленнее.

Установка антенн для модема своими руками

Правила установки антенн не отличаются от обычных. Главное условие – отсутствие препятствий между клиентской и базовой станциями. Растущее дерево, крыша соседнего здания или, что еще хуже, линия электропередач, служат надежными экранами для электромагнитных волн. И чем выше частота сигнала, тем большее затухание будут вносить расположенные на пути распространения радиоволн препятствия.

В зависимости от типа крепления антенны можно устанавливать на стене здания или закреплять на мачте. Есть два вида антенн MIMO :

  • моноблочные;
  • разнесенные.

Моноблочные уже содержат внутри две конструкции, установленные с необходимой поляризацией, а разнесенные – состоят из двух антенн, которые нужно крепить отдельно, каждая из них должна быть направлена точно на базовую станцию.

Все нюансы установки антенны MIMO своими руками четко и подробно описаны в сопроводительной документации, но лучше предварительно проконсультироваться с провайдером или пригласить представителя для установки, заплатив не очень большую сумму, но получив определенную гарантию на произведенные работы.

Как сделать антенну самостоятельно

Принципиальных сложностей при самостоятельном изготовлении нет. Нужны навыки работы с металлом, умение держать в руках паяльник, желание и аккуратность.

Непременное условие – строгое соблюдение геометрических размеров всех, без исключения, составляющих частей. Геометрические размеры высокочастотных устройств должны быть соблюдены с точностью до миллиметра и точнее. Любое отклонение ведет к ухудшению характеристик. Упадет коэффициент усиления, увеличится взаимосвязь между антеннами MIMO. В конечном итоге вместо усиления сигнала буден наблюдаться его ослабление.

К сожалению, в широком доступе отсутствуют точные геометрические размеры. Как исключение, имеющиеся в сети материалы основаны на повторении некоторых заводских конструкций, не всегда скопированных с заданной точностью. Поэтому не стоит возлагать большие надежды на публикуемые в интернете схемы, описания и методики.

С другой стороны, если не требуется сверх сильного усиления, то выполненная самостоятельно, с соблюдением указанных размеров антенна MIMO, все равно даст, хоть и не большой, но положительный эффект.

Стоимость материалов невысока, затраты времени при наличии навыков также не слишком велики. К тому же никто не мешает испытать несколько вариантов и выбрать приемлемый по результатам тестирования.

Для того чтобы сделать MIMO антенну 4G LTE своими руками, нужны два абсолютно ровных листа оцинкованной стали толщиной 0.2-0.5 мм, а лучше одностороннего фольгированного стеклотекстолита. Один из листов пойдет на изготовление рефлектора (отражателя), а другой – на изготовление активных элементов. Кабель для подключения к модему должен иметь сопротивление 50 Ом (таков стандарт для модемного оборудования).

Телевизионный кабель использовать нельзя по двум причинам:

  • сопротивление 75 Ом вызовет рассогласованность со входами модема;
  • большая толщина.

Также необходимо подобрать разъемы, которые должны в точности соответствовать разъемам на модеме.

Важно! Указанное расстояние между активными элементами и рефлектором должно отсчитываться от слоя фольги в случае использования фольгированного материала.

Кроме того понадобится небольшой отрезок медного провода толщиной 1-1.2 мм.

Изготовленная конструкция должна быть помещена в пластиковый корпус. Металл использовать нельзя, поскольку таким образом антенна будет заключена в электромагнитный экран и работать не будет.

Обратите внимание! Большая часть чертежей относится не к MIMO антеннам, а к панельным. Внешне они отличаются тем, что к простой панельной антенне подводится один кабель, а к MIMO нужно два.

Изготовив две панельные антенны, можно получить разнесенный вариант, выполненной своими руками антенны МИМО 4G.

Подводя итоги, можно сказать, изготовление антенны МИМО своими руками – не очень трудное дело. При надлежащей тщательности вполне возможно получить работоспособное устройство, сэкономив некоторое количество финансов. Несколько проще выполнить антенну 3G своими руками. В отдаленной местности, где еще нет покрытия ЛТЕ, это может быть единственным вариантом повысить скорость соединения.

Видео

WiFi - торговая марка для беспроводных сетей на базе стандарта IEEE 802.11. В повседневной жизни пользователи беспроводных сетей используют термин "технология WiFi", подразумевая не торговую марку, а стандарт IEEE 802.11.

Технология WiFi позволяет развернуть сеть без прокладки кабеля, уменьшая тем самым стоимость развёртывания сети. Благодаря , где нельзя проложить кабель, например, вне помещений и в зданиях, имеющих историческую ценность, могут обслуживаться беспроводными сетями.
Вопреки распространенному мнению о "вредности" WiFi, излучение от WiFi устройств в момент передачи данных на два порядка (в 100 раз) меньше, чем у сотового телефона.

MIMO - (англ. Multiple Input Multiple Output) - технология передачи данных, основанная на применении пространственного мультиплексирования с целью одновременной передачи нескольких информационных потоков по одному каналу, а также многолучевое отражение, которое обеспечивает доставку каждого бита информации соответствующему получателю с небольшой вероятностью влияния помех и потерь данных.

Решение проблеммы увеличения пропускной способности

При интенсивном развитии одних высоких технологий возрастают требования к другим. Этот принцип напрямую затрагивает и системы связи. Одна из наиболее актуальных проблем В современных системах связи - необходимость повышения пропускной способности и скорости передачи данных. Существует два традиционных способа увеличения пропускной способности расширение полосы частот и повышение излучаемой мощности.
Но из-за требований к биологической и электромагнитной совместимости накладываются ограничения на повышение излучаемой мощности и расширение полосы частот. При таких ограничениях проблема нехватки пропускной способности и скорости передачи данных заставляет искать новые эффективные методы ее решения. Одним из самых эффективных методов - применение адаптивных антенных решёток со слабо коррелированными антенными элементами. На этом принципе основана технология MIMO . Системы связи, которые используют эту технологию называются MIMO системы (Multiple Input Multiple Output).

Стандарт WiFi 802.11n – один из наиболее ярких примеров использования технологии MIMO. Согласно ему он позволяет поддерживать скорость до 300 Мбит/сек. Причем предыдущий стандарт 802.11g позволял предоставлять лишь 50 Мбит/сек. Кроме увеличения скорости передачи данных, новый стандарт благодаря MIMO также позволяет обеспечить лучшие характеристики качества обслуживания в местах с низким уровнем сигнала. 802.11n используется не только в системах точка/многоточка (Point/Multipoint) – наиболее привычной нише использования технологии WiFi для организации LAN (Local Area Network), но и для организации соединений типа точка/точка которые используются для организации магистральных каналов связи со скоростью несколько сотен Мбит/сек и позволяющих передавать данные на десятки километров (до 50 км).

Стандарт WiMAX также имеет два релиза, которые раскрывают новые возможности перед пользователями с помощью технологии MIMO. Первый – 802.16e – предоставляет услуги мобильного широкополосного доступа . Он позволяет передавать информацию со скоростью до 40 Мбит/сек в направлении от базовой станции к абонентскому оборудованию . Однако MIMO в 802.16e рассматривается как опция и используется в простейшей конфигурации – 2х2. В следующем релизе 802.16m MIMO рассматривается как обязательная технология, с возможной конфигурацией 4х4. В данном случае WiMAX уже можно отнести к сотовым системам связи, а именно четвертому их поколению (за счет высокой скорости передачи данных), т.к. обладает рядом присущих сотовым сетям признаков: роуминг, хэндовер, голосовые соединения. В случае мобильного использования , теоретически, может быть достигнута скорость 100 Мбит/сек. В фиксированном исполнении скорость может достигать 1 Гбит/сек.

Наибольший интерес представляет использование технологии MIMO в системах сотовой связи . Данная технология находит свое применение, начиная с третьего поколения систем сотовой связи. Например, в стандартеUMTS , в Rel. 6 она используется совместно с технологией HSPA с поддержкой скоростей до 20 Мбит/сек, а в Rel. 7 – с HSPA+, где скорости передачи данных достигают 40 Мбит/сек. Однако в системах 3G MIMO так и не нашла широкого применения.

Системы, а именно LTE, также предусматривают использование MIMO в конфигурации до 8х8. Это в теории может дать возможность передавать данные от базовой станции к абоненту свыше 300 Мбит/сек. Также важным положительным моментом является устойчивое качество соединения даже на краю соты. При этом даже на значительном удалении от базовой станции, или при нахождении в глухом помещении будет наблюдаться лишь незначительное снижение скорости передачи данных.

Мы с вами живем в эпоху цифровой революции, уважаемый аноним. Не успели мы привыкнуть к какой-то новой технологии, нам уже со всех сторон предлагают еще более новую и продвинутую. И пока мы томимся размышлениями, действительно ли эта технология реально поможет нам получить более быстрый интернет или нас просто очередной раз разводят на деньги, конструкторы в это время разрабатывают еще более новую технологию , которую нам предложат взамен текущей уже буквально через 2 года. Это касается и технологии MIMO антенн.

Что же это за технология - MIMO? Multiple Input Multiple Output - множественный вход множественный выход. Прежде всего, технология MIMO является комплексным решением и касается не только антенн. Для лучшего понимания этого факта стоит совершить небольшой экскурс в историю развития мобильной связи . Перед разработчиками стоит задача передать больший объем информации в единицу времени, т.е. увеличить скорость. По аналогии с водопроводом - доставить пользователю больший объем воды в единицу времени. Мы можем сделать это увеличив "диаметр трубы", или, по аналогии, - расширив полосу частот связи. Первоначально стандарт GSM был заточен под голосовой трафик и имел ширину канала равную 0.2 МГц. Это было вполне достаточно. Кроме того есть проблема обеспечения многопользовательского доступа. Ее можно решить разделив абонентов по частоте (FDMA) или по времени (TDMA). В GSM применяются оба способа одновременно. В итоге мы имеем баланс между максимально возможным количеством абонентов в сети и минимально возможной полосой для голосового трафика. С развитием мобильного интернета эта минимальная полоса стала полосой препятствия для увеличения скорости. Две технологии основанные на платформе GSM - GPRS и EDGE достигли предельной скорости 384 кБит/с. Для дальнейшего увеличения скорости необходимо было расширить полосу для интернет трафика одновременно по возможности используя инфраструктуру GSM. В результате был разработан стандарт UMTS. Основным отличием здесь является расширение полосы сразу до 5 МГц, а для обеспечения многопользовательского доступа - применение технологии кодового доступа CDMA, при котором несколько абонентов одновременно работают в одном частотном канале. Такую технологию назвали W-CDMA, подчеркивая этим, что она работает в широкой полосе. Эта система была названа системой третьего поколения - 3G, но при этом она является надстройкой над GSM. Итак, мы получили широкую "трубу" в 5МГц, что позволило первоначально увеличить скорость до 2 МБит/с.

Как еще можно увеличить скорость, если у нас нет возможности дальше увеличивать "диаметр трубы"? Мы можем распараллелить поток на несколько частей, пустить каждую часть по отдельной небольшой трубе и затем сложить эти отдельные потоки на приемной стороне в один широкий поток. Кроме того, скорость зависит от вероятности ошибок в канале. Уменьшая эту вероятность путем избыточного кодирования, упреждающей коррекции ошибок, применения более совершенных способов модуляции радиосигнала, мы также можем увеличить скорость. Все эти наработки (совместно с расширением "трубы" путем увеличения числа несущих на канал) последовательно применялись в дальнейшем усовершенствовании стандарта UMTS и получили наименование HSPA. Это не замена для W-CDMA, а soft+hard upgrade этой основной платформы.

Разработкой стандартов для 3G занимается международный консорциум 3GPP. В таблицу сведены некоторые особенности разных релизов этого стандарта:

3G HSPA скорость & главные технологические особенности
3GPP релиз Технологии Скорость Downlink (MBPS) Скорость Uplink (MBPS)
Rel 6 HSPA 14.4 5.7
Rel 7 HSPA+
5 MHz, 2x2 MIMO downlink
28 11
Rel 8 DC-HSPA+
2x5 MHz, 2x2 MIMO downlink
42 11
Rel 9 DC-HSPA+
2x5 MHz, 2x2 MIMO downlink,
2x5 MHz uplink
84 23
Rel 10 MC-HSPA+
4x5 MHz, 2x2 MIMO downlink,
2x5 MHz uplink
168 23
Rel 11 MC-HSPA+
8x5 MHz 2x2/4x4 MIMO downlink,
2x5 MHz 2x2 MIMO uplink
336 - 672 70

Технология 4G LTE, помимо обратной совместимости с 3G сетями, что позволило ей одержать верх над WiMAX, способна в перспективе развить еще большие скорости, до 1Гбит/с и выше. Здесь применяются еще более продвинутые технологии переноса цифрового потока в радиоинтерфейс, например OFDM модуляция, которая очень хорошо интегрируется с MIMO технологией.

Итак, что же такое MIMO? Распараллелив поток на несколько каналов можно пустить их разными путями через несколько антенн "по воздуху", и принять их такими же независимыми антеннами на приемной стороне. Таким образом мы получаем несколько независимых "труб" по радиоинтерфейсу не расширяя полосы . Это основная идея MIMO . При распространении радиоволн в радиоканале наблюдаются селективные замирания. Это особенно заметно в условиях плотной городской застройки, если абонент находится в движении или на краю зоны обслуживания соты. Замирания в каждой пространственной "трубе" происходят не одновременно. Поэтому если мы передадим по двум каналам MIMO одну и ту же информацию с небольшой задержкой, предварительно наложив на нее специальный код (метод Аламуоти, наложение кода в виде магического квадрата), мы можем восстановить потерянные символы на приемной стороне, что эквивалентно улучшению отношения сигнал/шум до 10-12 дБ. В итоге такая технология опять же приводит к возрастанию скорости. По сути это давно известный разнесенный прием (Rx Diversity) органично встроенный в MIMO технологию.

В конечном счете, мы должны понимать, что MIMO должно поддерживаться как на базе, так и у нашего модема. Обычно в 4G число каналов MIMO кратно двум - 2, 4, 8 (в Wi-Fi системах получила распространение трехканальная система 3x3) и рекомендуется, чтобы их число совпадало и на базе и на модеме. Поэтому для фиксации этого факта MIMO определяют с каналами прием∗передача - 2x2 MIMO, 4x4 MIMO и т.д. Пока в настоящее время мы имеем дело преимущественно с 2x2 MIMO.

Какие антенны применяются в технологии MIMO? Это обычные антенны, просто их должно быть две (для 2x2 MIMO). Для разделения каналов применяется ортогональная, так называемая X-поляризация. При этом поляризация каждой антенны относительно вертикали сдвинута на 45°, а относительно друг друга - 90°. Такой угол поляризации ставит оба канала в равные условия, поскольку при горизонтально/вертикальной ориентации антенн один из каналов неизбежно получил бы большее затухание из-за влияния земной поверхности. При этом 90° сдвиг поляризации между антеннами позволяет развязать каналы между собой не менее чем на 18-20 дБ.

Для MIMO нам с вами потребуется модем с двумя антенными входами и две антенны на крыше. Однако остается открытым вопрос поддерживается ли эта технология на базовой станции. В стандартах 4G LTE и WiMAX такая поддержка есть как на стороне абонентских устройств, так и на базе. В 3G сети не все так однозначно. В сети уже работают тысячи устройств не поддерживающих MIMO, для которых внедрение этой технологии приносит обратный эффект - пропускная способность сети понижается. Поэтому операторы пока не спешат повсеместно внедрять MIMO в 3G сетях. Чтобы база могла предоставить абонентам высокую скорость она сама должна иметь хороший транспорт, т.е. к ней должна быть подведена "толстая труба", желательно оптиковолокно, что тоже не всегда имеет место. Поэтому в 3G сетях технология MIMO в настоящий момент находится в стадии становления и развития, проходит тестирование как операторами, так и пользователями, причем последними не всегда успешно. Поэтому возлагать надежды на MIMO антенны стоит только в 4G сетях. На краю зоны обслуживания соты можно применять антенны с большим усилением, например зеркальные, для которых уже есть в продаже MIMO облучатели

В сетях Wi-Fi технология MIMO зафиксирована в стандартах IEEE 802.11n и IEEE 802.11ac и поддерживается уже многими устройствами. Пока мы наблюдаем приход в 3G-4G сети технологии 2x2 MIMO, разработчики не сидят на месте. Уже сейчас разрабатываются технологии 64x64 MIMO с умными антеннами имеющими адаптивную диаграмму направленности. Т.е. если мы пересядем с дивана на кресло или уйдем на кухню, наш планшет заметит это и развернет диаграмму направленности встроенной антенны в нужном направлении. Нужен ли кому-то будет этот сайт в то время?

MIMO (Multiple Input Multiple Output – множественный вход множественный выход) – это технология, используемая в беспроводных системах связи (WIFI, сотовые сети связи), позволяющая значительно улучшить спектральную эффективность системы, максимальную скорость передачи данных и емкость сети. Главным способом достижения указанных выше преимуществ является передача данных от источника к получателю через несколько радио соединений, откуда данная технология и получила свое название. Рассмотрим предысторию данного вопроса, и определим основные причины, послужившие широкому распространению технологии MIMO.

Необходимость в высокоскоростных соединениях, предоставляющих высокие показатели качества обслуживания (QoS) с высокой отказоустойчивостью растет от года в год. Этому в значительной мере способствует появление таких сервисов как VoIP (), VoD () и др. Однако большинство беспроводных технологий не позволяют предоставить абонентам высокое качество обслуживания на краю зоны покрытия. В сотовых и других беспроводных системах связи качество соединения, также как и доступная скорость передачи данных стремительно падает с удалением от (BTS). Вместе с этим падает и качество услуг, что в итоге приводит к невозможности предоставления услуг реального времени с высоким качеством на всей территории радио покрытия сети. Для решения данной проблемы можно попробовать максимально плотно установить базовые станции и организовать внутреннее покрытие во всех местах с низким уровнем сигнала. Однако это потребует значительных финансовых затрат что в конечном счете приведет к росту стоимости услуги и снижению конкурентоспособности. Таким образом, для решения данной проблемы требуется оригинальное нововведение, использующее, по возможности, текущий частотный диапазон и не требующее строительства новых объектов сети.

Особенности распространения радиоволн

Для того чтобы понять принципы действия технологии MIMO необходимо рассмотреть общие в пространстве. Волны, излучаемые различными системами беспроводной радиосвязи в диапазоне свыше 100 МГц, во многом ведут себя как световые лучи. Когда радиоволны при распространении встречают какую-либо поверхность, то в зависимости от материала и размера препятствия часть энергии поглощается, часть проходит насквозь, а оставшаяся – отражается. На соотношение долей поглощенной, отраженной и прошедшей насквозь частей энергий влияет множество внешних факторов, в том числе и частота сигнала. Причем отраженная и прошедшая насквозь энергии сигнала могут изменить направление своего дальнейшего распространения, а сам сигнал разбивается на несколько волн.

Распространяющийся по вышеуказанным законам сигнал от источника к получателю после встречи с многочисленным препятствиями разбивается на множество волн, лишь часть из которых достигнет приемник. Каждая из дошедших до приемника волн образует так называемый путь распространения сигнала. Причем из-за того, что разные волны отражаются от разного числа препятствий и проходят разное расстояние, различные пути имеют разные.


В условиях плотной городской постройки, из-за большого числа препятствий, таких как здания, деревья, автомобили и др., очень часто возникает ситуация когда между (MS) и антеннами базовой станции (BTS) отсутствует прямая видимость. В этом случае, единственным вариантом достижения сигнала приемника являются отраженные волны. Однако, как отмечалось выше, многократно отраженный сигнал уже не обладает исходной энергией и может прийти с запозданием. Особую сложность также создает тот факт, что объекты не всегда остаются неподвижными и обстановка может значительно измениться с течением времени. В связи с этим возникает проблема – одна из наиболее существенных проблем в беспроводных системах связи.

Многолучевое распространение – проблема или преимущество?

Для борьбы с многолучевым распространением сигналов применяется несколько различных решений. Одной из наиболее распространенных технологий является Receive Diversity – . Суть его заключается в том, что для приема сигнала используется не одна, а сразу несколько антенн (обычно две, реже четыре), расположенные на расстоянии друг от друга. Таким образом, получатель имеет не одну, а сразу две копии переданного сигнала, пришедшего различными путями. Это дает возможность собрать больше энергии исходного сигнала, т.к. волны, принятые одной антенной, могут не быть принятыми другой и наоборот. Также сигналы, приходящие в противофазе к одной антенне, могут приходить к другой синфазно. Эту схему организации радио интерфейса можно назвать Single Input Multiple Output (SIMO), в противовес стандартной схеме Single Input Single Output (SISO). Также может быть применен обратный подход: когда используется несколько антенн на передачу и одна на прием. Благодаря этому также увеличивается общая энергия исходного сигнала, полученная приемником. Эта схема называется Multiple Input Single Output (MISO). В обеих схемах (SIMO и MISO) несколько антенн устанавливаются на стороне базовой станции, т.к. реализовать разнесение антенн в мобильном устройстве на достаточно большое расстояние сложно без увеличения габаритов самого оконечного оборудования.


В результате дальнейших рассуждений мы приходим к схеме Multiple Input Multiple Output (MIMO). В этом случае устанавливаются несколько антенн на передачу и прием. Однако в отличие от указанных выше схем эта схема разнесения позволяет не только бороться с многолучевым распространением сигнала, но и получить некоторые дополнительные преимущества. За счет использования нескольких антенн на передаче и приеме каждой паре передающей/приемной антенне можно сопоставить отдельный тракт для передачи информации. При этом разнесенный прием будет выполняться оставшимися антеннами, а данная антенна также будет выполнять функции дополнительной антенны для других трактов передачи. В результате, теоретически, можно увеличить скорость передачи данных во столько раз, сколько дополнительных антенн будет использоваться. Однако существенное ограничение накладывается качеством каждого радио тракта.

Принцип работы MIMO

Как уже отмечалось выше, для организации технологии MIMO необходима установка нескольких антенн на передающей и на приемной стороне. Обычно устанавливается равное число антенн на входе и выходе системы, т.к. в этом случае достигается максимальная скорость передачи данных. Чтобы показать число антенн на приеме и передаче вместе с названием технологии «MIMO» обычно упоминается обозначение «AxB», где A – число антенн на входе системы, а B – на выходе. Под системой в данном случае понимается радио соединение.

Для работы технологии MIMO необходимы некоторые изменения в структуре передатчика по сравнению с обычными системами. Рассмотрим лишь один из возможных, наиболее простых, способов организации технологии MIMO. В первую очередь, на передающей стороне необходим делитель потоков, который будет разделять данные, предназначенные для передачи на несколько низкоскоростных подпотоков, число которых зависит от числа антенн. Например, для MIMO 4х4 и скорости поступления входных данных 200 Мбит/сек делитель будет создавать 4 потока по 50 Мбит/сек каждый. Далее каждый их данных потоков должен быть передан через свою антенну. Обычно, антенны на передаче устанавливаются с некоторым пространственным разнесением, чтобы обеспечить как можно большее число побочных сигналов, которые возникают в результате переотражений. В одном из возможных способов организации технологии MIMO сигнал передается от каждой антенны с различной поляризацией, что позволяет идентифицировать его при приеме. Однако в простейшем случае каждый из передаваемых сигналов оказывается промаркированным самой средой передачи (задержкой во времени, и другими искажениями).

На приемной стороне несколько антенн принимают сигнал из радиоэфира. Причем антенны на приемной стороне также устанавливаются с некоторым пространственным разнесением, за счет чего обеспечивается разнесенный прием, обсуждавшийся ранее. Принятые сигналы поступают на приемники, число которых соответствует числу антенн и трактов передачи. Причем на каждый из приемников поступают сигналы от всех антенн системы. Каждый из таких сумматоров выделяет из общего потока энергию сигнала только того тракта, за который он отвечает. Делает он это либо по какому-либо заранее предусмотренному признаку, которым был снабжен каждый из сигналов, либо благодаря анализу задержки, затухания, сдвига фазы, т.е. набору искажений или «отпечатку» среды распространения. В зависимости от принципа работы системы (Bell Laboratories Layered Space-Time - BLAST, Selective Per Antenna Rate Control (SPARC) и т.д.), передаваемый сигнал может повторяться через определенное время, либо передаваться с небольшой задержкой через другие антенны.


В системе с технологией MIMO может возникнуть необычное явление, которое заключается в том, что скорость передачи данных в системе MIMO может снизиться в случае появления прямой видимости между источником и приемником сигнала. Это обусловлено в первую очередь уменьшением выраженности искажений окружающего пространства, который маркирует каждый из сигналов. В результате на приемной стороне становится проблематичным разделить сигналы, и они начинают оказывать влияние друг на друга. Таким образом, чем выше качество радио соединения, тем меньше преимуществ можно получить от MIMO.

Multi-user MIMO (MU-MIMO)

Рассмотренный выше принцип организации радиосвязи относится к так называемой Single user MIMO (SU-MIMO), где существует лишь один передатчик и приемник информации. В этом случае и передатчик и приемник могут четко согласовать свои действия, и в то же время нет фактора неожиданности, когда в эфире могут появиться новые пользователи. Такая схема вполне подходит для небольших систем, например для организации связи в доме офисе между двумя устройствами. В свою очередь большинство систем, такие как WI-FI, WIMAX, сотовые системы связи являются многопользовательскими, т.е. в них существует единый центр и несколько удаленных объектов, с каждым из которых необходимо организовать радиосоединение. Таким образом, возникают две проблемы: с одной стороны базовая станция должна передать сигнал ко многим абонентам через одну и ту же антенную система (MIMO broadcast), и в то же время принять сигнал через те же антенны от нескольких абонентов (MIMO MAC – Multiple Access Channels).

В направлении uplink – от MS к BTS, пользователи передает свою информацию одновременно на одной и той же частоте. В данном случае для базовой станции возникает сложность: необходимо разделить сигналы от различных абонентов. Одним из возможных способов борьбы с этой проблемой также является способ линейной обработки (linear processing), который предусматривает предварительную передаваемого сигнала. Исходный сигнал, согласно этому способу, перемножается с матрицей, которая составляется из коэффициентов отражающих интерференционное воздействие от других абонентов. Матрица составляется исходя из текущей обстановки в радиоэфире: числа абонентов, скоростей передачи и т.п. Таким образом, перед передачей сигнал подвергается искажению обратному с тем, которое он встретит во время передачи в радиоэфире.

В downlink – направление от BTS к MS, базовая станция передает сигналы одновременно на одном и том же канале сразу к нескольким абонентам. Это приводит к тому, что сигнал, передаваемый для одного абонента, оказывает влияние на прием всех других сигналов, т.е. возникает интерференция. Возможными вариантами борьбы с этой проблемой является использование, либо применение технологии кодирования dirty paper («грязная бумага»). Рассмотрим технологию dirty paper подробнее. Принцип ее действия основан на анализе текущего состояния радиоэфира и числа активных абонентов. Единственный (первый) абонент передает свои данные к базовой станции без кодирования, изменения своих данных, т.к. интерференции от других абонентов нет. Второй абонент будет кодировать, т.е. изменять энергию своего сигнала так чтобы не помешать первому и не подвергнуть свой сигнал влиянию от первого. Последующие абоненты, добавляемые в систему, также будут следовать этому принципу, и опираться на число активных абонентов и эффект, оказываемый передаваемыми ими сигналами.

Применение MIMO

Технология MIMO в последнее десятилетие является одним из самых актуальных способов увеличения пропускной способности и емкости беспроводных систем связи. Рассмотрим некоторые примеры использования MIMO в различных системах связи.

Стандарт WiFi 802.11n – один из наиболее ярких примеров использования технологии MIMO. Согласно ему он позволяет поддерживать скорость до 300 Мбит/сек. Причем предыдущий стандарт 802.11g позволял предоставлять лишь 50 Мбит/сек. Кроме увеличения скорости передачи данных, новый стандарт благодаря MIMO также позволяет обеспечить лучшие характеристики качества обслуживания в местах с низким уровнем сигнала. 802.11n используется не только в системах точка/многоточка (Point/Multipoint) – наиболее привычной нише использования технологии WiFi для организации LAN (Local Area Network), но и для организации соединений типа точка/точка которые используются для организации магистральных каналов связи со скоростью несколько сотен Мбит/сек и позволяющих передавать данные на десятки километров (до 50 км).

Стандарт WiMAX также имеет два релиза, которые раскрывают новые возможности перед пользователями с помощью технологии MIMO. Первый – 802.16e – предоставляет услуги мобильного широкополосного доступа. Он позволяет передавать информацию со скоростью до 40 Мбит/сек в направлении от базовой станции к абонентскому оборудованию. Однако MIMO в 802.16e рассматривается как опция и используется в простейшей конфигурации – 2х2. В следующем релизе 802.16m MIMO рассматривается как обязательная технология, с возможной конфигурацией 4х4. В данном случае WiMAX уже можно отнести к сотовым системам связи, а именно четвертому их поколению (за счет высокой скорости передачи данных), т.к. обладает рядом присущих сотовым сетям признаков: , голосовые соединения. В случае мобильного использования, теоретически, может быть достигнута скорость 100 Мбит/сек. В фиксированном исполнении скорость может достигать 1 Гбит/сек.

Наибольший интерес представляет использование технологии MIMO в системах сотовой связи. Данная технология находит свое применение, начиная с третьего поколения систем сотовой связи. Например, в стандарте, в Rel. 6 она используется совместно с технологией HSPA с поддержкой скоростей до 20 Мбит/сек, а в Rel. 7 – с HSPA+, где скорости передачи данных достигают 40 Мбит/сек. Однако в системах 3G MIMO так и не нашла широкого применения.

Системы, а именно LTE, также предусматривают использование MIMO в конфигурации до 8х8. Это в теории может дать возможность передавать данные от базовой станции к абоненту свыше 300 Мбит/сек. Также важным положительным моментом является устойчивое качество соединения даже на краю. При этом даже на значительном удалении от базовой станции, или при нахождении в глухом помещении будет наблюдаться лишь незначительное снижение скорости передачи данных.

Таким образом, технология MIMO находит применение практически во всех системах беспроводной передачи данных. Причем потенциал ее не исчерпан. Уже сейчас разрабатываются новые варианты конфигурации антенн, вплоть до 64х64 MIMO. Это в будущем позволит добиться еще больших скоростей передачи данных, емкости сети и спектральной эффективности.

WiFi - торговая марка для беспроводных сетей на базе стандарта IEEE 802.11. В повседневной жизни пользователи беспроводных сетей используют термин "технология WiFi", подразумевая не торговую...

WiFi - торговая марка для беспроводных сетей на базе стандарта IEEE 802.11. В повседневной жизни пользователи беспроводных сетей используют термин "технология WiFi", подразумевая не торговую...

Один из подходов к увеличению скорости передачи данных для WiFi стандарта 802.11 и для WiMAX стандарта 802.16 – это использование беспроводных систем с применением нескольких антенн, как для передатчика, так и для приемника. Такой подход называется MIMO (дословный перевод - «множественный вход множественный выход»), или «умная антенная системы» (smart antenna systems). Технология MIMO играет важную роль в реализации WiFi стандарта 802.11n.

В технологии MIMO применяются несколько антенн различного рода, настроенных на одном и том же канале. Каждая антенна передает сигнал с различными пространственными характеристиками. Таким образом, технология MIMO использует спектр радиоволн более эффективно и без ущерба для надежности работы. Каждый wi-fi приемник «прислушивается» ко всем сигналам от каждого wifi передатчика, что позволяет делать пути передачи данных более разнообразными. Таким образом, несколько путей могут быть перекомбинированы, что приведет к усилению требуемых сигналов в беспроводных сетях.

Еще один плюс технологии MIMO в том, что данная технология обеспечивает пространственное деление мультиплексирования (Spatial Division Multiplexing (SDM)). SDM пространственно уплотняет несколько независимых потоков данных одновременно (в основном, виртуальных каналов) внутри одной спектральной полосы пропускания канала. В сущности, несколько антенн передают различные потоки данных с индивидуальной кодировкой сигналов (пространственные потоки). Эти потоки, двигаясь параллельно по воздуху «пропихивают» больше данных по заданному каналу. На приемнике каждая антенна видит разные сочетания сигнальных потоков и приемник «демултиплексирует» эти потоки для их использования. MIMO SDM может значительно увеличить пропускную способность для передачи данных, если увеличить число пространственных потоков данных. Каждому пространственному потоку необходимы свои собственные передающие / принимающие (TX / RX) антенные пары на каждом конце передачи. Работа системы представлена на рис.1

Также необходимо понимать, что для реализации технологии MIMO требуется отдельная радиочастотная цепь и аналого-цифровой преобразователь (АЦП) для каждой антенны. Реализации, требующие более двух антенн в цепи должны быть тщательно спроектированы для того, чтобы не увеличивать расходы при сохранении надлежащего уровня эффективности.

Важным инструментом для повышения физической скорости передачи данных в беспроводных сетях, является расширение полосы пропускания спектральных каналов. Благодаря использованию более широкой полосы пропускания канала с ортогональным частотным разделением мультиплексирования (OFDM) передача данных осуществляется с максимальной производительностью. OFDM является цифровой модуляцией, которая отлично себя зарекомендовала в качестве инструмента для осуществления двунаправленной высокоскоростной беспроводной передачи данных в WiMAX / WiFi сетях. Метод расширения пропускной способности каналов является экономически эффективным и достаточно легко реализуемым с умеренным ростом цифровой обработки сигнала (DSP). При правильном применении, можно удвоить частоту пропускания стандарта Wi-Fi 802.11 с 20 МГц канала на 40 МГц, также можно обеспечить более чем в два раза увеличенную пропускную способность каналов, используемых в настоящее время. Благодаря объединению MIMO архитектуры с более широкой полосой пропускания канала, получается очень мощный и экономически целесообразный подход для повышения физической скорости передачи.

Применение MIMO технологии с 20 МГц каналами требует больших затрат для удовлетворения требований IEEE по WiFi стандарту 802.11n (100 Мбит / с пропускной способности на MAC SAP). Также для удовлетворения этих требований при использовании канала в 20 МГц понадобиться, по меньшей мере, по три антенны, как на передатчике, так и на приемнике. Но в то же время работа на 20 МГц канале обеспечивает надежную работу с приложениями, требующими высокую пропускную способность в реальной пользовательской среде.

Совместное применение технологий MIMO и расширения канала отвечает всем требованием пользователя и являет собой достаточно надежный тандем. Это так же верно и при использовании одновременно нескольких ресурсоемких сетевых приложений. Комбинация MIMO и 40 МГц расширения канала позволит отвечать и более сложным требованиям, таким как Закон Мура и выполнение технологии CMOS совершенствования DSP технологии.

При применении расширенного канала 40 МГц в диапазоне 2.4 ГГц, изначально возникли трудности с совместимостью с оборудованием на основе WiFi стандартов 802.11a /b/g, а также с оборудованием, использующим технологию Bluetooth для передачи данных.

Для решения этой проблемы в Wi-Fi стандарте 802.11n предусмотрен целый ряд решений. Одним из таких механизмов, специально предназначенным для защиты сетей, является так называемая невысокая пропускная способность (non-HT) дублированного режима. Перед использованием протокола передачи данных WiFi стандарта 802.11n этот механизм отправляет по одному пакету на каждую из половинок 40 МГц канала для объявления сети распределения вектора (NAV). Следуя non-HT дублированного режима NAV сообщению, протокол передачи данных стандарта 802.11n может быть использован в течении заявленного в сообщение время, без нарушения наследия (целостности) сети.

Другой механизм является своего рода сигнализацией и не дает беспроводным сетям расширять канал более чем 40 МГц. Например, в ноутбуке установлены модули 802.11n и Bluetooth, данный механизм знает о возможности возникновения потенциальных помех при работе этих двух модулей одновременно и отключает передачу по каналу 40 МГц одного из модулей.

Эти механизмы гарантируют, что WiFi 802.11n будут работать с сетями более ранних стандартов 802.11 без необходимости перевода всей сети на оборудование стандарта 802.11n.

Увидеть пример использования системы MIMO можно на рис.2

Если у Вас после прочтения возникнут какие-либо вопросы, Вы можете задать их через форму отправки сообщений в разделе



Поделиться